
474 Final Project - GeoGuesser AI

Brayden Smith
Department of Computer Science

Brigham Young University

Abstract

The game of GeoGuesser tasks the player
to consider images taken from around the
world and then guess as to the location of
the images. In this report, I cover the
iterative building of multiple convolutional
neural networks (CNNs) to a recurrent CNN
(RCNN). After much testing and iteration, the
RCNN performs better than the average player
on the substantial dataset that I have attained
from Google’s Street View API, but still only
scores on average an 18,000 out of 25,000 in a
game of GeoGuesser with large variation.

1 Introduction
GeoGuessr is an online geographic discovery game
originally designed by Swedish IT consultant Anton
Wallén. The premise of the game is that the player is put
into google street view on a random street somewhere
in the world. Through navigating around for a few
seconds the player then must guess as to their location.
Afterwards points are then allocated to the player with
respect to the distance of the guess and the actual
random location. Usually the player is given 5 positions
to guess, and then some final score is tallied up.

The problem of using DNNs to determine the location
that a photo was taken has been tackled many times
by many different groups. Models range in the scope of
CNNs like those built by Peddada and Hong that focused
primarily on images from a certain city and achieved
fairly high accuracy, and models like PlaNet (Weyand et
al., 2016) are CNNs amplified with Long-Term, short-
term memory units (LSTMs) used to classify images
from all over the world.

Thus, after much research into how previous models
had been built, I was curious as to the efficacy of the
Recurrent Convolutional Layers as built and tested by
Liang and Hu for object recognition. I felt that with
the great improvements that PlaNet had made when
augmented with LSTMs that in giving my model a sort
of built in memory to build a final answer when looking
at the 4 images, then I could build the most accurate
model.

2 Methods

The following section follows closely to the timeline of
events as I iteratively built models, beginning with data
collection through to the final best model and evaluation.

2.1 Data

Through Google’s Street View API, I was able to
download roughly 84,000 street view images from around
the world. Downloading 4 images at each location, I
had roughly 21,000 locations throughout the world that
I could train and test models on. While originally I
felt this was plenty of data to train the model on, I
noticed a fair amount of bias in the model to more
heavily populated areas of the world, and I feel that
would be due to how I downloaded most of the data, by
choosing cities and then picking random points in the
general area. Thus, when presented with a more rural
image, the model suffered greatly. Likewise, considering
the resources of models like PlaNet (Wayend et al., 2016)
with more than 126M images to use, the models I built
are lacking on total training data.

Figure 1: Example single round input into the model,
these 4 images are taken in the 4 cardinal directions
outside of Rouen, France, player must make a guess as
to the location of the picture and will receive a score out
of 5000 points, each game consists of 5 locations.



2.2 Score and Loss

In the original GeoGuesser game, after a guess is made
and submitted, the player receives some score based
off of the distance from the guess and actual location
and the size of the map. The maximum score a player
can receive in a single guess is 5000 points. While the
exact formula used by the official game is not released
to the public, I decided to follow in the footsteps of
observations of other people that the score of a guess

would be calculated as Score = 5000e
−x
2000 Originally

I had been using MSE as loss, and then tested Huber
loss as my loss functions during early training, but I
decided to test out using this scoring system as my loss
by Loss = 5000 − Score. This appeared to be learning
fairly well, likely since my goal was high scoring models.
The models of Peddada and Hong used a linear loss
and I found there to be fairly good results by using
the following Loss = 254×DisplacementOfGuess

280 . However
after awhile, I returned to the GeoGuesser scoring model
and found the best results using the following Loss =

180 − 180
−Displacement2

20000 where the order of displacement
was increased to further punish the more wild distant
guesses and also give a bit more leniency in guesses that
were closer to the mark.

2.3 Early Models

I was hoping to get a better understanding of the
difficulty and nature of the problem by tackling it first
by evaluating different shapes and structures of CNNs
trained on my data. Firstly, I took to fine tuning
the last few layers of the ResNet-152 model as a quick
exploration as to the usefulness of CNNs. Notably, the
ResNet-152 is a classification model, however; I had
decided that models built for this project would output
a latitude and longitude location for their guess, rather
than the systems used frequently in models like PlaNet
where Earth’s surface was sectioned off into a multitude
areas that then were used as labels. I decided to do
the more regression approach as this is how a human
player would play the game, inputting a guess at a very
specific location on Earth’s surface rather than guessing
an entire area.

After receiving fairly good results using ResNet’s pre-
trained weights, I took to building a CNN of my own
to tackle classifying these images and their locations.
Up until this point, I had been concatentating the 4
cardinal direction images on top of each other and had
also tried stitching them together into a large panorama.
I found the best results when stitching everything into
one large image, but the best model, the original fine-
tuned ResNet-152, I had the testing accuracy of an
average score at around 6,351 per game out of the 25,000
maximum points (5 rounds of 5,000 maximum points
per round). Considering that 6,000 is even less than the
average score on GeoGuesser’s official world map of 9,000
per game, I was fairly disappointed by the results.

2.4 Recurrent Convolutional Neural
Network

Thus, in desire to greatly improve the model, I turned
to work similar to what had been done to achieve better
results of PlaNet, I decided I needed to implement some
sort of memory system in the model. Since each input in
the model is four images, I wanted to create a memory
system so that the model would build up to its final
answer after seeing all 4 images in random order. I
turned to the idea of Recurrent Convolutional Layers
(RCLs). My now Recurrent CNN consists of a few
Convolutional layers similar to that of the first number of
layers of ResNet-34, and then 3 layers of RCLs followed
by 2 fully connected linear layers of 1000 hidden nodes,
and then a final output layer for the longitude and
latitude guess.

The RCL was by far the most difficult thing to build in
this project, and to be completely honest, I am fairly sure
that the implementation that I have so far is possibly not
entirely correct. I am confident that there is learning
and memory going on, but I feel I could still improve
on my implementation, however; so far with my limited
data set, I’ve achieved much better results with the
RCNN than with the fine-tuned ResNet or my custom
Convolutional neural networks.

Each Recurrent Convolutional Layer activates based
off of the following.

zt,m,i,j,k = (wb
m,k)>h(t,m−1,i,j)+(wl

m,k)>h(t−1,m,i,j)+bm,k

(1)

Where h(t,m,i,j) is the vectorized input on the patch
centered at location i, j, and in layer m, when computed
at time t for the kth RCL layer, thus m corresponds to
the 3 RCLs in my model, t varies from 1 to 4 over the
4 images. Note that while h(t,0,i,j) in the paper I am
pulling this from is defined as the input image, I have
instead defined it as the final output of the first few
convolutional layers. Then that in RCL feature map k
has the convolutional connections as vectorized format
wb

m,k. Notably, the paper I pull this from also included
an input of the RCL above k and previous in time t−1 to
be included in the final calculation of zt,m,i,j,k this was
omitted due to time, I imagine it could help, but due to
time constraints I left it out.

Evaluating this new RCNN initially gave similar
results to that of previous work, but after changing
the initial layers a little bit, reducing the learning rate,
changing the optimizer to Adam, and then correcting
some issues with my implementation of RCLs, the
model not only began to converge much more quickly
in training but also began performing much better on
my smaller testing samples. After never breaking a
score of more than 7,000 per game, the model scored
an average of roughly 16,200 each game over 10 testing
runs of 10,000 images (2,500 locations).



3 Results
Considering my average scores, a fairly skilled
GeoGuesser player, are around 22,000 out of 25,000,
the model still has a bit of work to do on beating me,
however; a score of on average 16,200 per game is quite
respectable, with out of the 10 test runs, 20,487 the
highest, I could see it being a fairly good opponent
to a new player. Nevertheless, the model appears to
be performing many times better than the initial naive
CNNs and I imagine that it could perform even better
with more data. I was fairly worried about overfitting
on the training set, which it’s still very possible that it
is doing, especially considering that in all of the training
and testing splits, cities that are trained on also have
images that are tested on as well. It would be interesting
to see if the model could train on images from a subset of
locations from around the world, and then be tested on
images of a different subset of cities and locations from
around the world that are entirely new to the network’s
eyes.

4 Conclusion
As a student fairly new to the world of building and
training deep neural nets (DNNs) I feel I have barely
scratched the surface of the field of image classification
and feature recognition in this final project. However, I
am fairly proud of the results that I have achieved, for
my final recurrent convolutional neural network (RCNN)
can in certain situations outperform my human guesses.
I look forward to continuing work in this and similar
projects.

References
[1] A. V. Peddada and J. Hong. Geo-Location

Estimation with Convolutional Neural Networks.
2015

[2] Ming Liang, and Xiaolin Hu. (2015). Recurrent
convolutional neural network for object
recognition. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
doi:10.1109/cvpr.2015.7298958

[3] Weyand, T., Kostrikov, I., and Philbin, J. (2016).
PlaNet - photo geolocation with convolutional neural
networks. Computer Vision – ECCV 2016, 37-55.
doi:10.1007/978-3-319-46484-8


