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Abstract

In hopes of better understanding how
seemingly small features of an area contribute
to the general nature of an entire region,
this project aims to apply understanding
of machine learning techniques to classify
data received from weather reporting stations
around the United States and inference the
type of climate an input is coming from.
Through determining which features are
vital to differentiating the different climates
I believe that attention can be brought to
those small changes that may lead to more
drastic changes in the health of a region. I
hope that a model such as the one I have
built could serve as an advisory tool to the
monitoring stations around the world, serving
as early-detection systems to catch drastic
changes in key indicator features, but also
as possibly useful forecasting systems given
calculated data.

In this report, I found that two models, the
decision tree classifier was extremely useful in
trimming down the wide range of numerical
features present in an environement, and also
a backpropogating multi-layered perceptron
classifier was then trained on data spanning
months of reports, I achieved the highest
consistent model accuracy beyond .9.

1 Introduction

Due to the large amounts of regional system data from
many remote observation sites, machine learning has
oftentimes been a tool repeatedly used to understand the
vast amounts of data available. Notable research groups
from universities such as those at MIT and Stanford
[Faizollahzadeh ardabili et al., 2019] have built models
that through the use of convolutional neural networks
and deep learning predict the region and climate from
image data. However, the interpretability of these
models is oftentimes not very useful. Thus the models
that I will discuss stretch the abilities of blind machine

learning models, mainly processing on raw numerical
input data as provided by weather stations.

ML has proved repeatedly to perform extremely well
tackling similar problems, for example multi-layered
perceptron classifiers have been shown to improve
statistical forecasting [McGovern et al. 2017] and other
purely data driven climate models have improved post-
processing [Rasp and Thuerey, 2020]. Using these data
driven models can be extremely useful, but many other
factors into the current situation of a region are not
always able to be numerically measured, for example
things such as cloud condensation levels, thus models
such as the CNNs are used to improve climate and
weather forecasting. While all the models are useful,
climate scientists still need to be able to interpret
the results of the models, thus though the numerical
driven models can be less versatile, they remain as the
benchmark of data-driven climate analysis. [Schneider
et al., 2017]

In this project I hope to build off of the knowledge
of those models built before and evaluate more ways in
which the numerical data continuously being collected
can be interpreted. Our primary goal is to evaluate
just how viable a machine learning model would be in
classifying regions off of local weather and geological
reporting data. Since data is widely available and
continuously being reported, a model would have ample
time and information to advise climate scientists as to
those features that are changing and are indicative of a
changing climate in a local region.

2 Methods
In this section, I cover our methods for building our most
accurate model capable of classifying a region’s climate
given regional geological and meteorological data.

2.1 Data Source
The Natural Resources Conservation Service (NRCS)
services a number of weather reporting stations around
the United States, the publicly available databases
contain measurements taken by these sites over the past
decade of service. Through obtaining reports from these
stations, I began to notice the wide range of features that
oftentimes only a single station would report on, and on



the other hand, missing data was frequent throughout
the entries available to be trained on. Most of the data
was that of monthly measurements from hundreds of
stations from May 2011 to March 2021

2.2 Köppen Climate Classification Labels
It appears that as each station reports data into the
NRCS databases, it signs off with a signature that
could be traced back to identify which weather station
reported the data. Thus each report could be traced
back to a specific location, and from there given the
location of the station, the surrounding climate could be
determined. In order to label the now known locations
of the weather reporting stations I turned to the Köppen
Climate classification system, a widely accepted system
consisting of 30 labels for the various climates across
the globe. Due to the fact that the climate groups
are mainly separated by that of vegetation groups, I
felt that the ecosystem conditions that the Köppen
climate classification system focus on would be highly
indicative of the climate and thus were useful labels for
our purposes.

However, considering our goal was that of accurate
climate classification, the 30 labels posed a difficult
classification task for all of our future models.
Nevertheless, models trained with the 30 labels
were able to achieve fairly high levels of accuracy with
respect to the large number of possible labels. However
I did combine some of the climate groups into categories
similar to that of how the Stanford classification study
by Johnson et al. (2019) which simplified the large
number of labels, the following table shows the 13
climate super-classes.

The NRCS weather reporting stations scattered
throughout the United States that report the data

used for the following models were chosen off of
the fact that they each resided in areas of different
classification. The following graphic shows the Köppen
Climate classifications for the United States. Notice
the wide range of climate groups especially throughout
the Western United States where most of the weather
reporting sites were chosen.

2.3 Station data

Initially, when trying to build usable models with our
data, I recognized the large number of features available
to train on. Since early training results were abysmal, I
were lead to the need to search for some subset of all of
the features reported to those that were the most useful
and consistent. Given the fact that many of the stations
reported different subsets of data, and the fact that for
the most part missing data was consistent throughout
any feature, I initially picked out some of the features I
felt were most consistent and likely to be important, and
then proceeded to use forward selection to look for any
features that were missing. The following table shows
the list of features our final models were trained on.

Month of the year, initially year was included

Air Temperature Average, degrees Fahrenheit

Air Temperature Maximum

Air Temperature Minimum

Precipitation Accumulation, Inches

Average of Precipitation

Soil Moisture Percent, Percent

Relative Humidity, Percent

Solar Radiation Average, Watts per meter squared

Table 2: Final set of features used in training and
evaluation

2.4 Missing Data

As has been mentioned previously, many of the rows
on the weather stations reports were filled with missing
values, while initially this was a frustrating problem to
deal that that lead to inconsistent and varying results,
the final list of features were some of the more frequently



and consistently reported features as given by most of
the weather stations around the United States. Thus, in
the few cases where a missing feature was had in these
more consistently reported columns, monthly averages
were inserted. Understandably, by including monthly
averages, possible anomalies were covered up, but by
using monthly averages I found the highest levels of
classification accuracy.

3 Results

The following section consists of our results, from
initially trimming our features down through a Decision
Tree Classifier, to eventually building a notable Multi-
Layered Perceptron Classifier for tackling our problem
of classifying weather data.

3.1 Initial Results

One of the first types of models that I built to
begin understanding the relationships within the data
was that of a Decision Tree Classifier, Decision Trees
operate under the advantage that they are simple to
understand and interpret, oftentimes perform well with
larger datasets, and have in built feature selection.
Whilst building different decision trees with different
parameters, I repeatedly noted which features were
used at the higher levels of the tree to split the data,
then assuming those features carried large amounts of
information, I ended up fine-tuning our list of usable
features with the decision trees.
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Figure 3: Accuracy given k CV folds for a DTC

From our decision trees, I found the highest level of
accuracy to be consistently around .53 when classifying
using the 13 super-classes as reported in Table 1. Highest
levels of accuracy when using the 30 Köppen Climate
Labels and a decision tree were consistently around
.42. Since a decision tree that had been trained on the
entire set of data will perform with 100% accuracy given
any data from the original set, I repeatedly performed
evaluations of decision trees through Sklearn’s cross-
validation package. Due to the fact that the results of

cross-validation were fairly consistent until unnecessarily
large numbers of folds, I feel confident that just our
decision tree model was consistent enough to make fairly
good predictions as to the type of climate given any sort
of new data.

3.2 Multi-layered Perceptron

Despite our initial success with the decision tree, I
felt that no matter the changes to the parameters of
the model or the polishing of extra data from weather
stations that I could ever break this fairly sub-par levels
of accuracy by the tree. Thus, as I had originally
intended to do, I turned to looking at the effectiveness
of multi-layered perceptrons.

Multi-layered perceptrons are universal function
approximators, and thus are often used in all areas of
research. Given our large amount of easily available
numerical training data I were fairly confident that I
could easily build accurate models capable of performing
our task of classifying climate given numerical data.
Since I had already done our exploration of decision
trees by the time that I began evaluating multi-layered
models, I kept the scope of features for our entire work
within the selected features as selected by the decision
trees.

Initially, the results of perceptrons with only a fairly
default settings and minimum number of hidden layers
(4 hidden nodes) I achieved accuracies well below than
what I was expecting, initial accuracy results came in
around ranges of .10-.25 for our 30 Köppen climate
classifications, and reached a maximum of around .32
even when using just the 13 super-classes. I then
began an iterative search for looking for parameters that
appeared to increase our generalization accuracy the
most.

For better performing backpropogation, I eventually
increased the learning rate a bit from the package’s
default settings and introduced momentum into the
model’s learning and found incremental improvements
in accuracy. By initially starting with no hidden layers
to 4 hidden layers with a maximum of 32 nodes per
hidden layer. I frequently ran into the issue that with the
larger models that the weights of the model would zero
out entirely. But given enough training and reasonable
model structure and parameters, our accuracy improved
from the original average of .32 to .43.

After working with a dataset of 4500 reports from
weather and geological stations from around the U.S.
I report that the best classification model I found
was that of a multi-layered perceptron of learning rate
1e−2 and momentum of .9. The model should also
contain 1 hidden layer of 8 nodes that learns using the
stochastic gradient descent in order to update weights.
Convergence appears to converge fairly quickly but early
stopping of the model frequently produces fairly accurate
models that don’t appear to over-fit on the training data,
as the model classifies our testing dataset of roughly 500
reports at an accuracy consistently around .43 averaged
over 10 runs using the assumed optimal parameters and



using the 13 super-class labels. Notably, small variations
in the parameters usually greatly negatively impacted
classification accuracies, so I felt extremely unsatisfied
with our results, possibly I had found some unstable
equilibrium that wasn’t really good in reality.

3.3 Increasing Time Frame

Throughout our search efforts of building a better model,
at each iteration the model is fed a single month’s worth
of data and then a prediction is made, but considering
the source of our data, I had data that was collected
at the same locations for multiple months in a row. It
seemed extremely unlikely that a model would be able
to accurately predict the climate of an area just based
off of 1 data point from a month of data, so in search
of a better classifying model I turned to exploring the
abilities of a model that was fed multiple consecutive
months of data and then made a prediction.

A large benefit of transforming multiple months of
data is that the number of possibly useful features could
be increased dramatically. I were fairly disappointed
originally at the small number of usable features
provided in our dataset. But with multiple months of
valid data our model would now be separating even
higher dimensional feature space.

In iteratively testing and evaluating these new models
that used multiple months of data, I felt it important to
not use too many months of data as that would mean
a climate scientist using a model of this design would
require more time and effort to be able to create the
needed input into the model to make a prediction.

3.4 Final Model

Returning to the iterative search for the best model, I
explored models that performed well on inputs consisting
of input covering the span of 2 months to 10 months,
while using both label systems as discussed. I verified
the natural and intuitive trend that as the number of
consecutive months increased that the general accuracy
of the model improved drastically.

I began by returning to the decision tree and I ended
up adding in some of the features that initially had been
removed due to their apparent insufficient information
gain. However, through testing on multiple sizes and
shapes of models, I applied Occam’s razor and returned
to the simpler models of consecutive months using only
the previously-mentioned features from Table 2 since
the accuracies were generally better than those that had
different features and many more missing attributes.

In similar shape to the model that was fed a single
month of input, I found optimal models to consistently
use a learning rate of 1e−2 and I found both Stochastic
gradient descent and Adam to both be optimal learning
strategies. As for the number of hidden layers, for
roughly every 2 months added to the input, I would add
another hidden layer where each layer had 128 nodes.
Thus for example, our most optimal model for data of 3
consecutive months had 3 hidden layers, each with 128
layers, wheras our most optimal model for 10 consecutive

months had 6 layers, consisting of 128 nodes for the first
3, 64 nodes for the last 3. All models were trained in a
similar fashion, with 4500 inputs to be trained on and
500 new inputs to be evaluated on. All accuracies in
Figure 4 are that of testing accuracy.
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Figure 4: Classification Accuracy given k months

4 Conclusion

After exploring the limitations and abilities of these
perceptron classifiers, I feel confident that the models
I have built are pushing the edges of the abilities of
these machine learning models. They have thus far
proven to be adept classification models that given
numerical weather data can quite accurately classify
climate of local regions. Our most accurate models
required that of multiple months of data, but given the
continual collecting of data occurring at these weather
stations, I feel these models could be promising advisory
models to monitor the health and state of nearby areas.
While models struggled to break .50 accuracy with only
1 month of data, a still fairly notable achievement
considering the 13 possible labels, through testing and
expansion of multiple months, I optimized our model to
in some cases classify accurately with accuracy greater
than .94.

5 Future Work

A large benefit of transforming multiple months of data
into different pairs of inputs was that our possible usable
data set’s size increased. Given just 12 months of data
from a single weather report one can create 66 unique
pairs of data. For the purposes of our models, I kept
only the pairs that were consecutive months since it
seemed more realistic and useful to restrict the scope
of data, thus 12 inputs become 11 consecutive pairs.
I feel confident that through further training and data
collection and sanitation that even the models that use
an input of around 3 months would be able to match
the performance of those models that use 6-10 months
of input.



In restricting the scope of our work to that of just
weather data from here in the United States I ignore the
many climates and environments that cover other areas
of the world. Interestingly, the span of the data I use in
this work covered 9 of the 13 super-classes and 19 of the
30 Ködden climate labels. However, expanding the data
to classify climate data from around the world would be
invaluable.
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